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Abstract We have performed quantum-mechanical calculations of tunnelling current 
dramed through a narrw probe weakly attached to quantum wires The amplitude of 
the current is appmimately proportional to the local density of ~ I a t e ~  in the wires. We 
demonstrate that the spatial variation of the pmbabilily distribution of an electron due 
to quantum interference effects is obtained by scanning the probe along the wires. 

1. Introduction 

In microstructures with dimensions less than the phase coherence length-the distance 
over which the electron phase information is retained-the transport properties are 
dominated by quantum interference effects. If the microstructure is in the dirty metal 
limit, an electron incident on the device is scattered from impurities and defects. The 
interference caused by scattering from different impurities leads to phenomenon such 
as the h/2e magnetoresistance oscillation in a ring geometry [l], weak localization 
121, and universal conductance fluctuations (UCF) [3]. In clean materials, for which the 
elastic mean free path can be larger than the sample size, scattering from the sample 
boundaries plays an alternative role. Resonant conduction through zerodimensional 
states has been observed in experiments [4]. Under these circumstances, the multiple 
reflections of the electron wave within the device results in a spatial variation of the 
local density of states [5,6]. 

A recent experiment by Eugster and del Alamo [7l demonstrated that the density 
of states in one-dimensional structures can be measured by means of tunnelling 
spectroscopy. Suppose that an additional narrow probe is weakly coupled to the 
devices. A tunnelling current leaking out through a barrier potential is roughly 
proportional to the density of states and provides tunnelling spectroscopy through 
sweeping the Fermi energy at low temperatures, where the density of states varies 
slowly on the scale of kBBT [7,8]. If the width of the tunnelling probe is reduced to 
be comparable to the Fermi wavelength, the tunnelling current will measure a local 
density of states modified by the quantum interference effects. 

In this paper, we propose an experiment in which the tunnelling current is 
measured while the tunnelling probe is scanned along the quantum wires. The 
amplitude of the current as a function of the coordinates provides a mapping of 
the probability distribution of an electron in the device, a concept well known in the 
field of scanning tunnelling microscopy (STM). 

0953-8984/93/131!375+08$07 50 0 1993 IOP Publtshing Ltd 1975 

~ 



1976 

2. Numerical model 

The model structures are illustrated in figure 1. They have a T-shaped geometry. 
The lead is attached at a right angle to the horizontal wire and is used to detect the 
tunnelling current leaking out a thin side wall of the wire. We confine our analysis to 
a twodimensional plane of infinitesimal thickness. This plane is patterned to form the 
quantum wire structures. We consider two types of device in which to investigate the 
effects of quantum interference on the tunnelling current: (a) a MITOW-wide-MrrOW 
(m) junction and (b) a wire with two impurities. In the former device the width 
of the wire is widened to D over a length L. The wide region acts as a resonator, 
analogous to e lmmagnet ic  waveguides, and the forward transmission probability 
shows narrow dips due to resonance as D is varied [9]. In the latter device, multiple 
reflections between the two impurities cause constructive and destructive interferences 
in the transmission probability as the separation between impurities is vaned [lo, 111. 

Suppose that an electron with energy EF = hzk$/2m is incident through the left- 
hand semi-infinite lead. In the absence of the side lead, the electron is either reflected 
with probability TB or transmitted With probability TF. We introduce an additional 
lead attached to the main channel through a barrier potential represented as a shaded 
area in figure 1. We assume a thin (d /  W = 0.1) uniform potential barrier with height 
U = 50Ep An electron is transmitted into the side lead with probability T’ To 
evaluate the transmission coefficients, we use a waveguide-matching technique [12,13]. 
The quantum wires are divided into a sequence of uniform waveguide sections, in 
which the wave function can be composed of a linear combination of standing wave 
solutions. The wave function is then matched across the interfaces between adjacent 
sections. We assume a hard-wall confinement potential in the transverse direction 
of the wire. We have checked that a sufficient number of modes are included in 
the calculation so that including more modes has little influence on the results. We 
restrict, for simplicity, our discussion to the case where electrons are incident only 
through the lowest mode in the semi-infinite lead. When more than two modes 
are occupied at the Fermi energy, the total current is given as a superposition of 
contributions from each incident mode. 
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3. Results and discussion 

3.1. Characterization of zero-dimensional states 
Let us first discuss the results on the NWN geometry. The fonvard transmission 
probability TF is plotted in figure 2(a) as a function of kFWJ/r in the absence of 
the side ,probe. The dimensions of the wide region are D/ W = 1.3 and L/ W = 
3.1. A system similar to our ( L  - W) has been discussed in detail by Sols et a1 
[14]. The increase in the width lowers the threshold energy of the transverse mode 
and quasibound states split off from one of the evanescent modes. The transmission 
probability shows narrow dips when the Fermi energy coincides with the quasibound 
state levels. We label the dips with nearly perfect reflection A, B, C and D as 
indicated in figure 2(a). In figures 2(b) and 2(c), we show the tunnelling probability 
Ts for two values of the position of the side lead a /W.  Since the coupling of the 
side lead to the main channel is weak, TF is not altered significantly. Therefore, we 
do not show TF in the presence of side lead. In general, the energy dependence of 
Ts reveals narrow peaks coinciding with the dips in Tp [SI. Note that the electron 
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Fieure 1. ConPeuralion of the svstem. A side 

a/w=1.55 M 
kFWh 

Pieure 2. ?tansmission probabilities as a function 
l&d is arlached;~ the main channel through a 
tunnelling barrier, represented by the shaded area, 
in which a barrier with height U is assumed. (a) 
The resonant ~ t m c t ~ c e s  ormr in the transmission 
probabilities due to the presence of quasi-bund 
slates in the wide-region. (b) me open circles 
indicate nu0 6-funnion impurities in a quantum 
wim. 

confinement in the wide region is weakened by the presence of the side lead, and 
hence the resonance energies are lowered. This is the reason that the dips in TF 
(calculated in the absence of the side lead) and the peaks in T, appear at slightly 
different energies in figure 2 

The tunnelling probability is related to the density of states g j (  EF - E j )  in the 
protied region. At T = 0 we have [7l 

o f - k ~ W / a  in the nab-wide-narrow slruclure 
with D / W  = 1.3 and L / W  = 3.1. (U) Fonvard 
transmission probability TF in the absence of the 
side lead. The dips of nearly perfecl reflection are 
labelled A-D. Transmission pmbabiliry Ts into the 
side lead is plotted for (b) a /W = 1.55 and ( E )  
a/W = 1.0. 

where the sum is over occupied one-dimensional subbands in the wire. The normal 
wave number ICL incident on the tunnelling barrier is independent of energy. 
Therefore, the tunnelling current gives a direct view of the density of states by 
sweeping Fermi energy provided that the energy dependence of the transmission 
coefficient T, at the Fermi energy across the barrier is negligible. It has been shown 
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that the increase of width creates narrow peaks in the density of states related to the 
quasibound states (61. One notices that no peaks corresponding to the dips B and D 
are observed when the side probe is placed at  the centre of the wide region and the 
peak corresponding to dip C disappears when a/ W = 1.0. This gives us an idea of 
tunnelling microscopy of electron states by scanning the tunnelling probe along the 
wire. 
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The resonance conditions in the NWN geometry are described by 

where L& 2 L represents the effective length of the wide region due to the open 
boundary at the exits to the MITOW wires, and Leff + L in the limit D > W .  The 
probability distribution of the electron wave function at the resonanm is displayed 
in figure 3. We find that the d i p  A, B, C and D correspond, respectively, to (n, m) 
= (2,1), (2,2), (2,3) and (2,4) with Le, = 3.2-3.4. The structures in Tp and T, at 
kFW/?r < 1.5 may be ascribed to the resonances with n = 1. In figure 4, we show 
threedimensional plots of the tunnelling probability as functions of the normalized 
Fermi wave number and the coordinate along the wire. As a/W is varied for fixed 
kFW/n, T, shows a multiple peak structure and the number of peaks is increased 
for the higher energy resonances in accordance with the standing wave pattern shown 
in figure 3. One can see that the tunnelling probability is enhanced when the side 
lead is placed near the maximum of the probability distribution, reflecting the large 
local density of states. Note that for dip A the resonance energy is lowered by a 
large amount compared to the resonance width when the side lead is placed near the 
cenee of the wide region. The tunnelling probability, therefore, shows a doublepeak 
structure if the energy is fixed at the higher-energy tail of the resonance. 

3.2. Charactetkrwn of quantum states scattered fmtn inipuntie8 

Let us discuss another case where quantum interference plays an essential role 
in determining the conductance of the system. Coherent scattering from multiple 
impurities in confined geometry causes an oscillatory behaviour of the probability 
distribution of an electron. This strongly affects the conductance of the wire as 
a function of Fermi energy. The conductance modification is observed at low 
temperatures as aperiodic fluctuations when the Fermi energy or an extemal magnetic 
field is varied. 'Ib illustrate the tunnelling characterization.of UCF we consider the 
simplest case shown in figure l(b), where a 6-function potential is assigned for each 
impurity: 

Smce we are dealing with confined geometries, the &function potential causes mode 
mixing 1151. The two 6-function impurities are located in the wire (u/W = 0.34 and 
v / W  = 0.57) with a separation of several times the wavelength (L/W = 3.1). We 
assume equal strength of the repulsive impurity potential to be mq/h2 = 5 with m 
the effective mass of an electron. 

The forward transmission probability in a device without a side lead is shown in 
figure 5(a). The oscillation occurs due to multiple reflections between impurities. 
The characteristics of this resonance are that the peaks become broader in energy 
and the transmission at the minima becomes larger for larger kFW/?r. The energies 
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Figure 3. Probability distribution in the wide region at the resonances labelled (a) A, 
(b) B, (c) C and (d) D. 

at which the maxima occur are roughly given by the condition i (A , /2 )  = L with 
A, the longitudinal wavelength of the lowest mode in the wire [ll]. One can see 
this in the probability distribution shown in figure 6. Since only the lowest transverse 
mode is occupied in the wire, we plot the magnitude of the wave function along the 
centre of the wire, i.e. y/W = 0.5. The tunnelling probability is increased when 
TF is maximum as shown in figures 5(b) and 5(c). The peak near k,W/?r = 2 is 
due to a quasi-bound state originating from the second-lowest subband. Figure 5(b) 
again indicates that the even-parity resonances do not give rise to peaks in T, if 
the side lead is placed in the middle between two impurities. One also finds in 
figure 5(c) that the peak in T, due to the i = 3 resonance disappears for a /W = 
1.0. Three-dimensional representation of the tunnelling probability shown in figure 7 
indicates that the probability distribution can be obtained through the tunnelling 
current measurement. In contrast to the case of the NWN geometry, the resonances 
are broad in energy and the peak-to-valIey ratio of Ts is not large, and hence the 
mapping of the probability distribution is obtained over the entire range of energy. 
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Fiyre  4. Tunnelling probability T, as a function of the position of the side lead a l W  
and of the normalized Fermi wave number k ~ W / r r  for WID = 1.3 and L/W = 3.1. 
The results (+o) correspond to the dips A-D, respmively. 

4. Concluding remarks 

We have presented a numerical simulation of the tunnelling characterization of 
quantum waveguide structures. The results indicate that the spatial variation of the 
probability distribution due to quantum interference effects in the plane of the side 
lead can be obtained by means of tunnelling spectroscopy. An experiment may be 
performed by employing the STM technique with a fixed separation between the tip 
and the sample. The sm tip is located over the metal narrow wires and is scanned 
in the plane parallel to the sample. Our results suggest that the STM technique is 
useful in the study of mesoscopic systems. Impurity scattering is expected to be the 
dominant source of interference effects in metals. In this system, however, multi- 
subband effects will need to be taken into account because of the short wavelength of 
electrons. Microstructures created in Gah-AlGaAs heterostructures, on the other 
hand, can provide clean single-mode devices, where the transmission resonances 
through the zero-dimensional states can be relatively easily observed. Unfortunately, 
the presence of surface depletion makes it difficult to measure the tunnelling current. 
Semiconductor materials free from surface depletion, such as InAs, will be appropriate 
materials for an experiment. 
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Figure S. Transmission probabilities as a function of 
k ~ W / r  in the double-impurity structure with L/W 
= 3.1. (a) Fonvard transmission probability TF in the 
absence of the side lead. Several maxima and minima 
are labelled FA. Bansmisston probability Ts into the 

2 side lead is plotted for (b) a/ W = 1.55 and (c) a/ W 1 1.5 
kFWh = 1.0. 
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Figure 6. Probability distribution in the wire at the 
energies indicated as E-I in figure 5(a) for y/W 
= 0.5. Two impurities are placed at z = 0 and z 
= 3.1. 

Figure 7. lhnnelling probability Ts in the doubl- 
impurity structure as a function of the position of 
the side lead a/W and of the normalized Fermi 
wave number kp WIT. 
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